

Assessment Schedule – 2008**Chemistry: Describe atomic structure and bonding (90172)****Evidence Statement**

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE	<p>Oxygen has the electron arrangement 2,6. Aluminium has the electron arrangement 2,8,3.</p> <p>To form an ion, oxygen gains 2 electrons (filling its outer / valence shell) and aluminium loses 3 electrons (to empty its outer / valence shell).</p> <p>Both ions end up with the same electron arrangement 2,8.</p>	<p>Correctly describes the electron arrangement for oxygen AND aluminium atoms.</p> <p>OR</p> <p>Oxygen atom AND ion described correctly</p> <p>OR</p> <p>Aluminium atom AND ion described correctly</p> <p>OR</p> <p>Oxide AND aluminium ions described correctly. Must say gain 2 / lose 3 electrons.</p>	<p>Correctly describes the electron arrangement for oxygen and aluminium atoms and ions.</p> <p>AND</p> <p>Explains how each atom forms an ion (gains 2, loses 3 electrons)</p> <p>AND</p> <p>Correctly identifies the electron arrangement for oxide and aluminium ions.</p>	
TWO (a) (b)	<p>^2H is made up of 1 proton, 1 neutron and 1 electron. ^3H is made up of 1 proton, 2 neutrons and 1 electron.</p> <p>Physical differences: Different masses, ^3H is heavier than ^2H as ^3H has an M of 3 and ^2H has an M of 2 / ^3H has one more neutron</p> <p>Chemical similarities They react in the same way as both isotopes have the same number of electrons (eg both isotopes form the H^+ ion).</p> <p>Other chemical / physical similarities / differences must have explanation as well.</p> <p>Density</p> <p>Rate of diffusion</p> <p>Physical similarities</p> <p>Both gases</p> <p>Same solubility</p> <p>Same boiling point / melting point.</p>	<p>Correctly describes ^2H and ^3H.</p> <p>OR</p> <p>Correctly identifies one physical AND one chemical difference / similarity.</p> <p>OR</p> <p>Correctly explains one chemical OR one physical similarity or difference.</p>	<p>Correctly describes ^2H and ^3H AND correctly explains one physical OR one chemical similarity / difference.</p> <p>OR</p> <p>Correctly explains one chemical AND one physical similarity / difference.</p>	

THREE	<p>Three Lewis structures are shown, each with two possible representations:</p> <ul style="list-style-type: none"> Methane (CH₄): The first structure shows a central carbon atom bonded to four hydrogen atoms with three lone pairs of electrons. The second structure shows a central carbon atom bonded to four hydrogen atoms with one lone pair of electrons, and three pairs of electrons shown as crosses. Phosphorus trichloride (PCl₃): The first structure shows a central phosphorus atom bonded to three chlorine atoms with one lone pair of electrons. The second structure shows a central phosphorus atom bonded to three chlorine atoms with three pairs of electrons shown as crosses. Carbon dioxide (CO₂): The first structure shows a central carbon atom double-bonded to an oxygen atom and single-bonded to another oxygen atom, each with two lone pairs of electrons. The second structure shows a central carbon atom double-bonded to an oxygen atom and single-bonded to another oxygen atom, with one lone pair of electrons on the first oxygen and three pairs of electrons shown as crosses on the second oxygen. <p>For each molecule, the first structure is followed by the text "or" and the second structure.</p>	<p>Any TWO correct.</p>	<p>Achievement plus COCl₂ correct.</p> <p>To gain Merit all diagrams must follow convention with electrons shown as either dots or crosses and clearly paired. Bonding electron pairs shown as dots or crosses should not be circled.</p>	
FOUR (a) (b)	<p>Water is a <u>molecule</u> (made up of covalently bonded atoms). The attractive forces between the molecules are weak intermolecular forces</p> <p>Part A:</p> <ul style="list-style-type: none"> Separation, close Energy, increasing Motion, can move past each other Attractive forces (as above) weak intermolecular. <p>Part B:</p> <ul style="list-style-type: none"> Separation, increasing distance between molecules Energy, breaking the intermolecular forces Motion, gas particles move faster Attractive forces, bonds broken. <p>Here the liquid water changes to gaseous water. The molecules have the same amount of kinetic energy and motion, but separation is increasing.</p>	<p>Correctly identifies water particles as molecules AND that there are weak intermolecular forces between the molecules</p> <p>OR</p> <p>Interprets graph correctly by describing 2 of the 4 points for Part A AND Part B.</p>	<p>Correctly identifies water particles as molecules AND that there are intermolecular forces between the molecules AND</p> <p>Interprets graph correctly by explaining what is happening in Part A</p> <p>EITHER</p> <p>Explaining what is happening in Part A</p> <p>OR</p> <p>Explaining what is happening in Part B (2 of the 4 points)</p> <p>OR</p> <p>Explaining 3 of 4 points for Part A and Part B.</p>	<p>Correctly identifies water particles as molecules AND that there are intermolecular forces between the molecules AND</p> <p>Interprets graph correctly by explaining what is happening in Part A</p> <p>AND</p> <p>Explaining what is happening in Part B.</p> <p>The comparison between Part A and Part B must explain that while the temperature is constant, energy added in B is breaking the intermolecular bonds.</p>

FIVE	<p>Sodium chloride is more likely to have the higher melting point.</p> <p>Sodium chloride is an ionic compound. (It is made up of metal and non-metal ions, so it will have ionic bonds.)</p> <p>Ammonia is a (covalent) molecule with weak intermolecular forces between the molecules. (It is made up of non-metal atoms, so it will have covalent bonds.)</p> <p>To melt sodium chloride, these very strong ionic bonds need to be broken. This requires a lot of energy, so sodium chloride will have a high melting point.</p> <p>To melt ammonia, the weak intermolecular forces need to be broken. This requires little energy, so ammonia will have a lower melting point than sodium chloride.</p>	<p>Identifies NaCl as the compound with the higher melting point AND Describes NaCl as an ionic compound</p> <p>OR</p> <p>Identifies NH₃ as the compound with the lower melting point AND Describes NH₃ as a covalently bonded molecule.</p>	<p>Identifies NaCl as the compound with the higher melting point AND Explains that NaCl is made up of ions</p> <p>OR</p> <p>NH₃ is made up of molecules, AND Links melting point to the type of bonding in ONE compound.</p> <p>(Eg: NaCl has strong ionic bonds which need a lot of energy to break OR NH₃ has weak intermolecular forces between molecules needing little energy to break).</p>	<p>Identifies NaCl as the compound with the higher melting point AND Explains that NaCl is made up of ions</p> <p>AND NH₃ is made up of molecules. AND Links MP to the type of bonding in BOTH compounds.</p> <p>(Eg: NaCl has strong ionic bonds which take a lot of energy to break so NaCl will have a high melting point AND NH₃ has (covalent bonds and) weak intermolecular forces between molecules which take a small amount of energy to break, so NH₃ will have the lower melting point).</p>
------	--	---	--	---

Judgement Statement – 2008

Achievement	Achievement with Merit	Achievement with Excellence
<p>A total of THREE opportunities answered at Achievement level or higher. (Must include an answer from Q4 or Q5.)</p> <p>3 × A</p>	<p>A total of THREE opportunities answered at Merit level or higher.</p> <p>3 × M</p>	<p>A total of FOUR opportunities answered including ONE at Excellence level and THREE at Merit level or higher.</p> <p>1 × E + 3 × M</p>